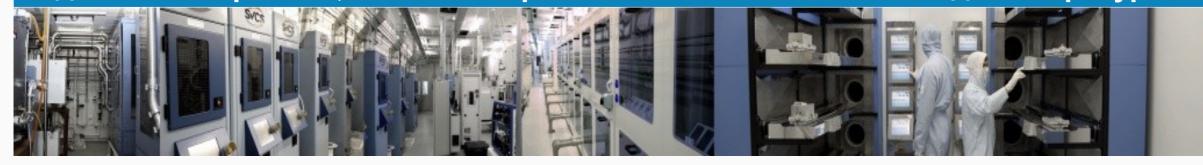


Центр НТИ «Сенсорика»

Переверзев Алексей Леонидович

Заместитель директора Центра НТИ «Сенсорика», Проректор по инновационной деятельности, д.т.н., доцент


E-mail: vrin@miee.ru

Стратегическая цель: создание и коммерциализация разработок в сфере цифровых сенсорных систем — технических средств и систем восприятия, распознавания и взаимодействия с реальным миром, разработка и реализация образовательных программ по профилю сквозной технологии «Сенсорика».

Технологии сенсорики могут быть использованы на любом рынке НТИ.

Реализован сквозной цикл подготовки кадров и создания сенсорных систем, изделий электроники, нано- и микросистемной техники от ЭКБ до аппаратуры

Проектирование чувствительных элементов сенсоров, микрои и наносистем

Проектирование и изготовление фотошаблонов

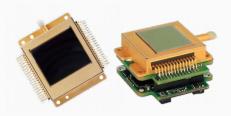
Изготовление чувствительных элементов сенсоров, микрои наносистем

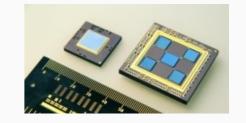
Проектирование и изготовление печатных плат

Проектирование и моделирование оборудования и приборов

Сверхточная сборка, корпусирование и испытания РЭА

На базе центра сформирован консорциум «Сенсорика» из представителей образовательных и научных организаций, представителей бизнеса, промышленных предприятий и объединений, институтов развития, включающий 42 участника.


Для реализации научной и проектной деятельности Центра организованы 5 научно-образовательных центров – НОЦ, выполняющих 10 научно-технических и технологических комплексных проектов.

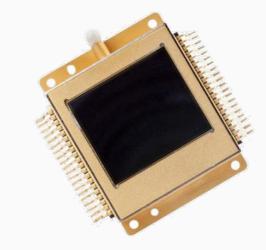

За 2018 год по разработанным в Центре основным и дополнительным образовательным программам подготовлено более 300 специалистов, имеющих высшее образование.

Направления деятельности Центра

- 1) Технологии проектирования и производства чувствительных элементов для интеллектуальных сенсоров технических средств и систем восприятия, распознавания и взаимодействия с реальным миром
- 2) Создание и производство нано- и микроэлектронных компонентов и микросистем для электронных схем преобразования и обработки сигналов от чувствительных элементов
- 3) Создание и освоение производства интегрированных и распределенных цифровых сенсорных систем для восприятия, распознавания и взаимодействия с реальным миром
- 4) Создание и производство цифровых биомедицинских сенсоров, интегрированных в персонализированные телемедицинские приборы

Разработка технологии производства ИК-фотоприёмных матричных модулей на базе гетероструктурных полупроводников

Краткая аннотация


Разрабатываемая технология предназначена для изготовления ИК фотоприемных матриц диапазона 1,5 мкм и ИК фотоприемных устройств (матрица со схемой обработки) гетероструктурных соединений на основе широкозонных полупроводников. Конечной продукцией будет являться фоточувствительный прибор, полупроводниковый состоящий фотоэлектрического И3 полупроводникового приемника излучения и схемы обработки фотосигнала в гибридном или интегральном исполнении, объединенных в единую конструкцию с чувствительностью в диапазоне 1.5 мкм с разрешением более 516х625 пикселей

Области применения

ИК спектрометры, системы машинного камеры, зрения, сенсоры и преобразующая аппаратура оптического и теплового излучения с функцией образов, обеспечение мониторинга, подсчета наблюдаемых распознавания и выявления их характерных признаков с высокой контрастностью в условиях задымленности, пыли и тумана.

Индустриальные партнёры

АО «Оптрон», г. Москва, АО ЗНТЦ, Зеленоград

Бортовая цифровая сенсорная система неконтактного мониторинга состояния водителя

Краткая аннотация

Одним из наиболее эффективных методов оценки состояния водителя является непрерывный анализ его сердечного пульса и ритма дыхания. Для решения указанной задачи предлагается разработать неконтактный измеритель пульса. В настоящее время ведутся работы по созданию основных узлов неконтактного радиолокационного измерителя пульса

Описание технологии и конечного продукта

Радиолокационный измеритель пульса (РИП) представляет собой малогабаритный маломощный радар, работающий в диапазоне частот, предназначенном для медицинских целей. По отраженному от пульсирующих органов человека сигналу с помощью специального программного обеспечения определяется частота пульса

Индустриальные партнёры

ОАО «ЗИТЦ», ООО «ИЦ МИЭТ», АО «Автоэлектроника»_

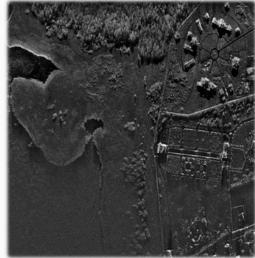
Компактный радар авиационного и космического базирования для

комплексов дистанционного зондирования земли

Краткая аннотация

Широкое распространение беспилотных летательных и космических аппаратов создает спрос на малогабаритные сенсорные средства для дистанционного зондирования Земли. Использование радиолокационных средств позволяет проводить съемку поверхности Земли независимо от атмосферных условий и освещения, а также подповерхностную съемку.

Описание продукта


Малогабаритная радиолокационная система с антенной системой и встроенной цифровой обработкой

Характеристики	БПЛА	KA
Полоса	9.5±0.3 ГГц	9.5±0.3 ГГц
Полоса обзора	2 км	250 км
Разрешение	0.3м	0.3м
Габариты	200х200х200 мм	900х400х400 мм
Macca	7кг	100кг

Области применения

Картографирование с большим разрешением, составление цифровой модели рельефа и 3D карт местности, контроль ледовой обстановки, анализ распространения природных катастроф, контроль сельскохозяйственных и лесных угодий

Разработка сенсорной системы мониторинга состояния пациента

Краткая аннотация

Система для непрерывного сбора и обработки информации о состоянии пациента как в стационаре, так и при транспортировке.

Описание продукта

Система предназначена для дальнейшей интеграции различными устройствами, в том числе с прикроватными мониторами, клиническими дефибрилляторами-мониторами, а также другим реанимационным оборудованием.

Система будет обеспечивать непрерывный контроль следующих параметров (параметр – метод измерения/контроля):

- артериальное давление (метод анализа колебаний давления в манжете, вызванных артериальными импульсами);
- пульс и SpO2 насыщение периферического капилляра кислородом, (метод пульсоксиметрии);
- дыхание (методом капнографии);
- электрическая активность сердца (метод биопотенциалов);
- сосудистое кровообращение (метод реографии).

Области применения Стационарная помощь, медицина катастроф; военная медицина; бригады скорой помощи.

Создание телемедицинских систем управления и контроля физиологических параметров организма

Краткая аннотация

Системы предназначены для диагностики, непрерывного контроля и прогнозирования развития состояния пациента на фоне проведения лечебных процедур, в том числе у пациентов с сахарным диабетом.

Описание продукта

«Интеллектуальные» технические средства, позволяющие получать результаты оценки физиологических показателей пациента в готовом для восприятия виде

Области применения

Телемедицинские системы диагностики и динамического наблюдения, дистанционное обследование, космическая телемедицина

Индустриальный партнёр

Акционерное общество «Зеленоградский инновационно-технологический центр» (АО «ЗИТЦ»)

Аппарат длительного искусственного кровообращения носимый АДИ-Н «Спутник»

Краткая аннотация

Предназначен для замены транспортной функции левого желудочка у больных с тяжёлыми формами сердечной недостаточности. Стоимость в 2 раза ниже заграничных аналогов. Стадия TRL9 - подготовка документов для проведения клинических испытаний.

Описание продукта

Состоит из имплантируемой части – насоса и внешней носимой части – модулей управления и аккумуляторов.

Области применения

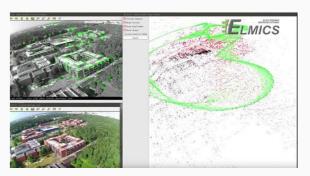
Кардиохирургия. Для пациентов, ожидающих пересадки сердца или находящихся на реабилитации.

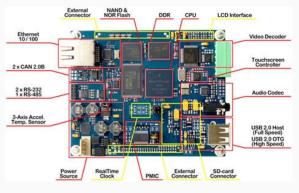
Ориентация и навигация беспилотных аппаратов по

видеоизображению

Краткая аннотация

Собственная аппаратная платформа для работы с видеоизображениями с реализованными алгоритмами ориентации беспилотных летательных аппаратов и роботов без сигналов ГСН, с возможностью привязки к картам местности.


Описание продукта


Аппаратная платформа и алгоритмы ориентации и привязки изображений к картам, построение маршрута и т.п.

- цифровая стабилизация изображения, основанная на самом видеоизображении
- улучшение качества изображения: фильтрация, выравнивание гистограмм и т.д.
- автоматическое обнаружение и сопровождение объектов на изображении
- пространственная навигация по видеоизображению (без ГСН или ИНС)
- восстановление 3D-карты местности и границ объектов по видеоизображению

Области применения

Ориентация и навигация беспилотных летательных аппаратов и транспортных средств при отсутствии сигналов ГСН, например, закрытые складские комплексы.

Контакты

Гаврилов С.А. — директор Центра НТИ «Сенсорика», +7 (499) 731-22-79, <u>nti@miet.ru</u> Переверзев А.Л. – зам. директора Центра НТИ «Сенсорика», +7 (499) 710-15-62, <u>vrin@miee.ru</u>

Руководители Научно-образовательных центров (НОЦ):

- Бахтин А.А. НОЦ «Распределенные цифровые сенсорные системы», +7 (499) 720-85-82, tcs@miee.ru
- Дюжев Н.А. НОЦ «Перспективные материалы микроэлектроники», +7 (499) 720-69-07, djuzhev@ntc-nmst.ru
- Лялин К.С. НОЦ «Интегрированные цифровые сенсорные системы», +7 (499) 710-10-29, ksl@miee.ru
- Селищев С.В. НОЦ «Биомедицинские системы», +7 (499) 720-87-63, sersel@miee.ru
- Тимошенков С.П. НОЦ «Микроэлектронные устройства сенсорики» +7 (499) 720-87-68, spt@miee.ru